Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Drug Dev Res ; 85(2): e22166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424708

RESUMO

Hyperlipidemia is a common clinically encountered health condition worldwide that promotes the development and progression of cardiovascular diseases, including atherosclerosis. Berberine (BBR) is a natural product with acknowledged anti-inflammatory, antioxidant, and metabolic effects. This study evaluated the effect of BBR on lipid alterations, oxidative stress, and inflammatory response in rats with acute hyperlipidemia induced by poloxamer-407 (P-407). Rats were pretreated with BBR (25 and 50 mg/kg) for 14 days and acute hyperlipidemia was induced by a single dose of P-407 (500 mg/kg). BBR ameliorated hypercholesterolemia, hypertriglyceridemia, and plasma lipoproteins in P-407-adminsitered rats. Plasma lipoprotein lipase (LPL) activity was decreased, and hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was enhanced in hyperlipidemic rats. The expression of low-density lipoprotein receptor (LDL-R) and ATP-binding cassette transporter 1 (ABCA1) was downregulated in hyperlipidemic rats. BBR enhanced LPL activity, upregulated LDL-R, and ABCA1, and suppressed HMG-CoA reductase in P-407-administered rats. Pretreatment with BBR ameliorated lipid peroxidation, nitric oxide (NO), pro-inflammatory mediators (interleukin [IL]-6, IL-1ß, tumor necrosis factor [TNF]-α, interferon-γ, IL-4 and IL-18) and enhanced antioxidants. In addition, BBR suppressed lymphocyte ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) as well as NO and TNF-α release by macrophages isolated from normal and hyperlipidemic rats. In silico investigations revealed the binding affinity of BBR toward LPL, HMG-CoA reductase, LDL-R, PSK9, ABCA1, and E-NTPDase. In conclusion, BBR effectively prevented acute hyperlipidemia and its associated inflammatory responses by modulating LPL, cholesterolgenesis, cytokine release, and lymphocyte E-NTPDase and E-ADA. Therefore, BBR is an effective and safe natural compound that might be employed as an adjuvant against hyperlipidemia and its associated inflammation.


Assuntos
Berberina , Hiperlipidemias , Ratos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/patologia , Estresse Oxidativo , Interleucina-6/metabolismo , Antioxidantes/uso terapêutico , Linfócitos/metabolismo , Linfócitos/patologia , Fator de Necrose Tumoral alfa/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Oxirredutases/uso terapêutico
2.
Bone ; 181: 117036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311303

RESUMO

Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.


Assuntos
Aldeído Oxirredutases , Reabsorção Óssea , Osteólise , Animais , Camundongos , Osteogênese/genética , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Oxirredutases/uso terapêutico , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , NF-kappa B/metabolismo , Diferenciação Celular , Osteólise/metabolismo , Ligante RANK/metabolismo
3.
Cell Tissue Res ; 393(3): 471-487, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458798

RESUMO

Hyperlipidemia (HLP) is one of the risk factors for memory impairment and cognitive impairment. However, its pathological molecular mechanism remained unclear. 3ß-hydroxysterol Δ24- reductase (DHCR24) is a key enzyme in cholesterol synthesis and has been reported to decrease in the affected areas in the brain of neurodegenerative disorders. In this study, hyperlipidemic mouse model was established to study the effect of high blood lipid on brain. The data obtained from HPLC analysis demonstrated that the cholesterol level in the brain of mice with hyperlipidemia was significantly elevated compared to the control group. While the pathological damages were observed in both cerebral cortex and hippocampus in the brain of hyperlipidemic mice. Furthermore, the protein level of DHCR24 was downregulated accompanied by elevated ubiquitination level in the hyperlipidemic mice brain. The mouse neuroblastoma cells N2a were exposed to the excess cholesterol loading, the cells underwent apoptosis and the mRNA and protein of DHCR24 in cholesterol-loaded N2a cells were significantly reduced. In addition, the expression level of endoplasmic reticulum stress marker protein (Bip and Chop) was markedly increased in response to the cholesterol loading. More importantly, overexpression of DHCR24 in N2a reversed neuronal apoptosis induced by the cholesterol loading. Conclusively, these findings suggested that hyperlipidemia could cause brain tissue injuries via down-regulating DHCR24, and overexpression of DHCR24 may alleviate hyperlipidemia-induced neuronal cells damage by reversing the endoplasmic reticulum stress-mediated apoptosis.


Assuntos
Lesões Encefálicas , Oxirredutases , Camundongos , Animais , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Hidroxicolesteróis/farmacologia , Estresse Oxidativo , Dieta Hiperlipídica , Apoptose , Colesterol/metabolismo
4.
Int J Mol Med ; 52(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37264973

RESUMO

Nanoplastics (NPs) are a newly discovered type of environmental pollutant. The potential for neurotoxicity caused by NPs and their mechanisms are unclear. The present study aimed to determine the molecular mechanism underlying neurotoxicity induced by NPs. Microglia (BV2) cells were used for in vitro studies, and it was found that NPs invaded cells, activated inflammasomes, induced the release of significant quantities of inflammatory factors by detection of inflammatory response­associated proteins through Western blot and ELISA. By detection of FITC, SOD, GSH, cellular iron level, and ferroptosis­related proteins, it was found that NPs compromised the anti­oxidative mechanisms of cells, increased intracellular lipid peroxidation and Fe2+ concentration and triggered inflammatory reactions and ferroptosis. Pretreatment with reactive oxygen species (ROS) inhibitor N­acetylcysteine (NAC) alleviated induction of inflammatory reactions and ferroptosis of cells. In addition, inhibiting expression of c­Jun N­terminal kinase (JNK) increased expression of heme oxygenase (HO­1), resulting in decreased ferroptosis, indicating that the JNK/HO­1 signaling pathway was involved in NP­induced effects on ferroptosis in BV2 cells. In conclusion, NPs could induce inflammatory responses and ferroptosis in BV2 cells. JNK/HO­1 mediated ferroptosis may serve an important role in the toxicity of microglia induced by NPs. This study provided novel evidence for the toxic effects of NPs and highlighted a theoretical mechanistic basis for safe prevention and treatment of plastic pollution­induced neurotoxicity.


Assuntos
Ferroptose , Humanos , Microplásticos/metabolismo , Microplásticos/farmacologia , Microglia/metabolismo , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Ferritinas/metabolismo , Ferritinas/farmacologia , Oxirredutases/metabolismo , Oxirredutases/farmacologia
5.
Small Methods ; 7(7): e2201618, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148172

RESUMO

Infectious diseases caused by various bacteria pose a serious threat to human health, and the emergence of drug-resistant bacteria has forced humans to develop new and effective antimicrobial agents and strategies. Herein, a metal-organic framework-derived Bi2 S3 /FeS2 heterojunction (BFS) is synthesized, and the materials-microorganism interface is further constructed. Through interfacial electron transfer, electrons are transferred from the bacteria to the BFS surface, disrupting the balance of the bacterial electron transport chain and inhibiting the metabolic activity of the bacteria. Moreover, BFS has enzyme-like (oxidase and peroxidase) properties and can produce a large amount of reactive oxygen species to kill additional bacteria. In vitro antibacterial results show that the antibacterial efficiency of BFS against both Staphylococcus aureus and Escherichia coli reaches more than 99.9% after 4 h of co-culture under dark conditions. Meanwhile, in vivo experiments show that BFS can effectively kill bacteria and promote wound healing. This work shows that BFS could be a novel, effective nanomaterial for the treatment of bacterial infections by constructing the materials-microorganism interface.


Assuntos
Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/farmacologia , Elétrons , Transporte de Elétrons , Antibacterianos/farmacologia , Staphylococcus aureus , Oxirredutases/farmacologia , Sulfetos/farmacologia
6.
Infect Disord Drug Targets ; 23(5): e090323214508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892121

RESUMO

BACKGROUND: Tuberculosis is the second leading cause of death from infectious diseases worldwide. Multidrug-resistant Mycobacterium tuberculosis is spreading throughout the world, creating a crisis. Hence, there is a need to develop anti-tuberculosis drugs with novel structures and versatile mechanisms of action. OBJECTIVE: In this study, we identified antimicrobial compounds with a novel skeleton that inhibits mycobacterium decaprenylphosphoryl-ß-D-ribose oxidase (DprE1). METHODS: A multi-step, in silico, structure-based drug screening identified potential DprE1 inhibitors from a library of 154,118 compounds. We experimentally verified the growth inhibitory effects of the eight selected candidate compounds against Mycobacterium smegmatis. Molecular dynamics simulations were performed to understand the mechanism of molecular interactions between DprE1 and ompound 4. RESULTS: Eight compounds were selected through in silico screening. Compound 4 showed strong growth inhibition against M. smegmatis. Molecular dynamics simulation (50 ns) predicted direct and stable binding of Compound 4 to the active site of DprE1. CONCLUSION: The structural analysis of the novel scaffold in Compound 4 can pave way for antituberculosis drug development and discovery.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Ribose/metabolismo , Ribose/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo
7.
Oncol Rep ; 49(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734286

RESUMO

Sorafenib is a targeted drug for hepatocellular carcinoma (HCC), however, its efficacy is limited. Nuclear factor erythroid 2­related factor 2 (Nrf2) contributes to sorafenib resistance. The present study investigated camptothecin (CPT) as a Nrf2 inhibitor to sensitize HCC to sorafenib. The effect of CPT on sorafenib sensitivity in HCC was assessed in vivo using H22 mice model (n=32) and VX2 rabbit models (n=32), which were sorted into four treatment groups. The expression levels of Nrf2, its downstream genes, including heme oxygenases­1 (HO­1) and NAD(P)H quinone oxidoreductase 1 (NQO1), and the epithelial­mesenchymal transition markers Snail and N­cadherin in tumors were determined using immunohistochemical staining and western blotting. Magnetic resonance imaging was used to monitor changes in tumor microcirculation and activity before and after treatment. Mouse body weights, liver and kidney function were monitored to evaluate the safety of combined therapy. The results revealed that the mean tumor size of the combined group was significantly smaller than that of sorafenib group for both models. The expression levels of Nrf2, heme oxygenase­1, NAD(P)H quinone oxidoreductase 1, Snail, and N­cadherin in the sorafenib group were significantly higher than control group (P<0.05). However, the expression levels of these genes were decreased in the combined group (P<0.05). Microcirculation perfusion and tumor activity in the combined group were also lower than sorafenib group. There were no significant differences in mouse body weight or liver and kidney function among the four groups. In summary, CPT is a Nrf2 inhibitor that could enhance the efficacy of sorafenib against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Coelhos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe , Fator 2 Relacionado a NF-E2/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , NAD , Camptotecina/farmacologia , Quinonas/farmacologia , Oxirredutases/farmacologia , Oxirredutases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
8.
J Cachexia Sarcopenia Muscle ; 14(1): 606-621, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564038

RESUMO

BACKGROUND: Sarcopenia, the age-related decline in skeletal muscle mass and function, diminishes life quality in elderly people. Improving the capacity of skeletal muscle differentiation is expected to counteract sarcopenia. However, the mechanisms underlying skeletal muscle differentiation are complex, and effective therapeutic targets are largely unknown. METHODS: The human Gene Expression Omnibus database, aged mice and primary skeletal muscle cells were used to assess the expression level of pyruvate dehydrogenase B (PDHB) in human and mouse aged state. d-Galactose (d-gal)-induced sarcopenia mouse model and two classic cell models (C2C12 and HSkMC) were used to assess the myogenic effect of PDHB and the underlying mechanisms via immunocytochemistry, western blotting, quantitative real-time polymerase chain reaction, RNA interference or overexpression, dual-luciferase reporter assay, RNA sequencing and untargeted metabolomics. RESULTS: We identified that a novel target PDHB promoted myogenic differentiation. PDHB expression decreased in aged mouse muscle relative to the young state (-50% of mRNA level, P < 0.01) and increased during mouse and primary human muscle cell differentiation (+3.97-fold, P < 0.001 and +3.79-fold, P < 0.001). Knockdown or overexpression of PDHB modulated the expression of genes related to muscle differentiation, namely, myogenic factor 5 (Myf5) (-46%, P < 0.01 and -27%, P < 0.05; +1.8-fold, P < 0.01), myogenic differentiation (MyoD) (-55%, P < 0.001 and -34%, P < 0.01; +2.27-fold, P < 0.001), myogenin (MyoG) (-60%, P < 0.001 and -70%, P < 0.001; +5.46-fold, P < 0.001) and myosin heavy chain (MyHC) (-70%, P < 0.001 and -69%, P < 0.001; +3.44-fold, P < 0.001) in both C2C12 cells and HSkMC. Metabolomic and transcriptomic analyses revealed that PDHB knockdown suppressed pyruvate metabolism (P < 0.001) and up-regulated ariadne RBR E3 ubiquitin protein ligase 2 (Arih2) (+7.23-fold, P < 0.001) in cellular catabolic pathways. The role of forkhead box P1 (FoxP1) (+4.18-fold, P < 0.001)-mediated Arih2 transcription was the key downstream regulator of PDHB in muscle differentiation. PDHB overexpression improved d-gal-induced muscle atrophy in mice, which was characterized by significant increases in grip strength, muscle mass and mean muscle cross-sectional area (1.19-fold to 1.5-fold, P < 0.01, P < 0.05 and P < 0.001). CONCLUSIONS: The comprehensive results show that PDHB plays a sarcoprotective role by suppressing the FoxP1-Arih2 axis and may serve as a therapeutic target in sarcopenia.


Assuntos
Sarcopenia , Idoso , Humanos , Camundongos , Animais , Sarcopenia/metabolismo , Mioblastos/metabolismo , Diferenciação Celular/genética , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Piruvatos/metabolismo , Piruvatos/farmacologia , Proteínas Repressoras , Fatores de Transcrição Forkhead , Ubiquitina-Proteína Ligases/metabolismo
9.
Exp Biol Med (Maywood) ; 248(2): 186-192, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373746

RESUMO

The vascular endothelium is one of the main targets of oxidative stress which plays an important role in the pathophysiology of vascular damage. Recent studies show that vitamin D can positively regulate endothelial functions in various chronic diseases and in cases of increased oxidative stress. In our study, we investigated the restorative and protective potentials of paricalcitol which is frequently used in patients with chronic renal failure, a vitamin D analogue, in human umbilical vein endothelial cells (HUVEC) before and after H2O2-induced oxidative stress. Paricalcitol treatment after the oxidative stress induced by H2O2 increased cell viability in endothelial cells depending on the dose that was used. While paricalcitol (500 nM) decreased caspase-3 activity and mitochondrial membrane potential loss, it increased nitric oxide (NO) production and reduced glutathione (GSH) levels. Paricalcitol treatment before oxidative stress increased cell viability. It increased NO production and mitochondrial membrane potential while significantly reducing caspase-3 activity. While paricalcitol caused a significant inhibition of protein disulfide isomerase (PDI) reductase activity in healthy endothelial cells, it did not cause a significant change on the PDI reductase activity under oxidative stress conditions. Present study showed that paricalcitol has restorative and protective effects on endothelial cells against oxidative injury, but these effects occur at high concentrations of paricalcitol.


Assuntos
Apoptose , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/toxicidade , Caspase 3/metabolismo , Caspase 3/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Estresse Oxidativo , Ergocalciferóis/farmacologia , Ergocalciferóis/metabolismo , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(5): 805-814, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36224682

RESUMO

Objective: To explore the effects of hydroxyacyl-CoA dehydrogenase alpha subunit (HADHA) on the migration and invasion of HTR-8/SVneo cells, a human trophoblast cell line, and its potential mechanism of action. Methods: Immunofluorescence staining was done to evaluate the expression levels of HADHA in samples of normal villi and recurrent spontaneous abortion (RSA) villi at 6-8 weeks. Lentiviral infection system was used to construct stable HTR-8/SVneo cell lines with HADHA overexpression and knockdown. Western blot, qRT-PCR, Wound-healing assay, and Transwell assay were used to determine the effect of HADHA on the migration and invasion of HTR-8/SVneo cells and the expression of relevant genes. Transcriptome sequencing and bioinformatics analysis were done to screen for the potential target genes and signaling pathways regulated by HADHA. The specific molecular mechanism of how HADHA regulates the migration and invasion of HTR-8/SVneo cells was examined by adding the inhibitor of protein kinase B (PKB/AKT). Results: HADHA was highly expressed in extravillous trophoblasts (EVT) of RSA villus samples as compared with samples from the normal control group. In HTR-8/SVneo cells overexpressing HADHA, the expression levels of migration and invasion-related genes, including HLA-G, MMP2, MMP9, and NCAD, were decreased (P<0.01,P<0.05), and the migration and invasion abilities of HTR-8/SVneo cells were weakened (P<0.05). HADHA knockdown increased the expression levels of HLA-G, MMP2, MMP9, and NCAD (P<0.01, P<0.05), and promoted the migration and invasion of HTR-8/SVneo cells (P<0.05). In addition, HADHA overexpression decreased the phosphorylation levels of PI3K and AKT (P<0.05) and inhibited the PI3K/AKT signaling pathway. HADHA knockdown activated the PI3K/AKT signaling pathway. When MK-2206, an AKT inhibitor, was added to stable HTR-8/SVneo cell lines with HADHA knockdown, the migration and invasion of the cells were significantly reduced. Conclusion: HADHA inhibits the migration and invasion of HTR-8/SVneo cells by inhibiting the PI3K/AKT signaling pathway.


Assuntos
Pré-Eclâmpsia , Proteínas Proto-Oncogênicas c-akt , Movimento Celular/fisiologia , Coenzima A/metabolismo , Coenzima A/farmacologia , Feminino , Antígenos HLA-G/metabolismo , Antígenos HLA-G/farmacologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Trofoblastos/metabolismo
11.
Nutr Res ; 106: 101-118, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36183668

RESUMO

Previously, our group found that the dietary trace mineral element selenium and vitamin B6 (VitB6) alone was involved in lipid metabolism. However, the effects of selenium combined with VitB6 on hyperlipidemia and lipid metabolism have not been reported until now. We hypothesized that selenium and VitB6 cosupplementation would alleviate the hyperlipidemic and hepatic dysfunction and with minimum side effects in a Sprague-Dawley rat model of hyperlipidemia induced by a high-fat diet. Our results showed that selenium combined with VitB6 could improve dyslipidemia and displayed better in vivo hypocholesterolemic abilities at early intervention. Moreover, cosupplementation reduced atherogenic indexes (atherogenic index and atherogenic index of plasm) and the ratio of ApoB/ApoA1. The liver function index aspartate aminotransferase in serum was reduced, as was and total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol in liver. The intervention also increased the levels of ApoA1 in serum and high-density lipoprotein cholesterol of liver. In addition, the combination of selenium and VitB6 decreased liver lipid deposition and alleviated steatosis, reduced adipocyte size of white adipose tissue, increased the activities of hepatic lipase and total lipase and the hepatic 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) level, decreased the hepatic mRNA transcription of lipogenic and regulatory genes including Srebf1 and downstream fat synthesis-related enzymes (Acc and Fasn) and cholesterol synthesis speed limiting enzyme Hmgr, increased the mRNA abundance of Lcat and Cyp7a1, increased the protein expression of SIRT1 and PPARα, and up-regulated the protein expression of sterol regulatory element-binding protein 1c in the livers of hyperlipidemia rats. We first demonstrated that oral selenium and VitB6 cosupplementation exerted synergism in lowering blood and liver lipid profiles and antiatherosclerotic effects in hyperlipidemic rats by reducing endogenous cholesterol and lipid synthesis, enhancing the transport of cholesterol to hepatocytes and promoting fatty acid beta oxidation.


Assuntos
Fígado Gorduroso , Hiperlipidemias , Selênio , Oligoelementos , Animais , Apolipoproteínas B , Aspartato Aminotransferases/metabolismo , Colesterol/metabolismo , HDL-Colesterol , LDL-Colesterol/metabolismo , Coenzima A/metabolismo , Coenzima A/farmacologia , Coenzima A/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Hiperlipidemias/tratamento farmacológico , Lipase/metabolismo , Lipase/farmacologia , Lipase/uso terapêutico , Metabolismo dos Lipídeos , Fígado/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Oxirredutases/uso terapêutico , PPAR alfa/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Selênio/farmacologia , Selênio/uso terapêutico , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Oligoelementos/farmacologia , Oligoelementos/uso terapêutico , Triglicerídeos/metabolismo , Vitamina B 6 , Vitaminas/farmacologia
12.
BMC Complement Med Ther ; 22(1): 258, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192707

RESUMO

BACKGROUND: The emergence of drug resistance among pathogens has resulted in renewed interest in bioprospecting for natural microbial products. METHODS: This study aimed to bioprospecting endophytic actinobacterium associated with Aloe ferox Mill for its antibacterial activity. Endophytic actinomycetes were isolated from the gel of A. ferox Mill by surface sterilization technique using actinomycete isolation agar. The isolate with a promising antibacterial activity was identified using 16S rRNA sequence analysis. The minimum inhibitory concentration (MIC) of the extract was assessed by the micro-dilution method and its effect on the respiratory chain dehydrogenase (RCD) activity was ascertained by the iodonitrotetrazolium chloride (INT) assay. Fourier transform-infrared spectrophotometer (FTIR) and gas chromatography-mass spectrophotometry (GC-MS) were employed to identify functional groups and the chemical constituents, respectively. RESULTS: The actinobacterium was found to be Streptomyces olivaceus CP016795.1. Its extract displayed noteworthy antibacterial activity (MIC ≤1 mg/mL) against Staphylococcus aureus (ATCC 25925), Bacillus cereus (ATCC 10102), and Escherichia coli (ATCC 25922); and showed an inhibitory effect on the RCD activity. FTIR spectrum displayed hydroxyl, amine, and aromatic groups, and the GC-MS revealed 5-Hydroxymethylfurfural as the main constituent (19.47%). CONCLUSIONS: S. olivaceus CP016795.1 can serve as a potential source of effective antibacterial compounds.


Assuntos
Actinobacteria , Aloe , Ágar/farmacologia , Aminas/farmacologia , Antibacterianos/farmacologia , Bioprospecção , Cloretos/farmacologia , Escherichia coli , Oxirredutases/farmacologia , Extratos Vegetais/farmacologia , RNA Ribossômico 16S
13.
Langmuir ; 38(38): 11724-11731, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36103666

RESUMO

Nanobubbles (NBs) stimulate seed germination; however, the mechanism of the promotion effect of NBs remains unclear. The impact of NBs on seed water absorption was investigated; we subsequently studied the genes associated with the response of radish seeds to NB water and used RNA sequencing to generate their expression profiles, especially those of aquaporin genes. NB water significantly promoted germination. The times at which 50% of the germinating seeds achieved germination (T50) for the submerged radish seeds in NB and control water were 11.6 and 17.4 h, respectively. NB water-germinated radish seeds showed a water uptake rate coefficient that was 15% higher than that of those germinated in control water. Through GO enrichment and cluster analyses, it was evident that NB water significantly increased the level of expression of the genes associated with the following activities: oxidoreductase, peroxidase, and antioxidant. Our results demonstrated that NB water increases the water uptake rate of radish seeds via two mechanisms. The NB water-produced exogenous hydroxyl radical (•OH) increases the seed coat's water permeability and enhances cell wall loosening, and NB water increases the aquaporin gene expression level of radish seeds.


Assuntos
Aquaporinas , Raphanus , Antioxidantes/farmacologia , Aquaporinas/genética , Aquaporinas/metabolismo , Aquaporinas/farmacologia , Radical Hidroxila , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Peroxidases , Raphanus/genética , Raphanus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes , Água/farmacologia
14.
Toxicol Appl Pharmacol ; 454: 116217, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058301

RESUMO

Skin offers protection, regulation, and sensation to the body. In collaboration with other stromal cells of the skin, keratinocytes, which differentiate from epidermis basal layers (low) to outer layers (high) leading to the stratum corneum, ensure that skin barrier function is achieved. Despite this, age-related inflammation and oxidative stress in the skin can negatively impact skin quality. Antioxidants can protect against skin damage, preventing skin aging or even reversing to some extent. Previous studies showed that Dendrobium Nobile (D. nobile) resists aging, prolongs life span, and attenuates oxidative damage and inflammation in various models. However, how D. nobile protects skin against aging or other damage is not well described yet. Therefore, in this study, a keratinocyte cell line (HACAT) was used to investigate the effect of dendrobine, the main active component of D. nobile, on oxidative damage in skin. We found that dendrobine reduced the level of intracellular reactive oxygen species by regulating the balance of antioxidant enzymes and oxidases, as well as decreased the cell apoptosis in H2O2-induced HACAT. Dendrobine also significantly activated the nuclear erythroid 2-related factor (Nrf2)/Keap1 signaling pathway. However, this antioxidant effect of dendrobine was abolished after Nrf2 gene being silenced. The results showed that dendrobine could resist the oxidative damage of skin cells, and its antioxidant function is related to the up-regulation of antioxidant enzymes as well as activation of Nrf2/Keap1 signaling pathway.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Alcaloides , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Células HaCaT , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
Brain Behav Immun ; 106: 49-66, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35933030

RESUMO

BACKGROUND: There is a need for early therapeutic interventions after traumatic brain injury (TBI) to prevent neurodegeneration. Microglia/macrophage (M/M) depletion and repopulation after treatment with colony stimulating factor 1 receptor (CSF1R) inhibitors reduces neurodegeneration. The present study investigates short- and long-term consequences after CSF1R inhibition during the early phase after TBI. METHODS: Sex-matched mice were subjected to TBI and CSF1R inhibition by PLX3397 for 5 days and sacrificed at 5 or 30 days post injury (dpi). Neurological deficits were monitored and brain tissues were examined for histo- and molecular pathological markers. RNAseq was performed with 30 dpi TBI samples. RESULTS: At 5 dpi, CSF1R inhibition attenuated the TBI-induced perilesional M/M increase and associated gene expressions by up to 50%. M/M attenuation did not affect structural brain damage at this time-point, impaired hematoma clearance, and had no effect on IL-1ß expression. At 30 dpi, following drug discontinuation at 5 dpi and M/M repopulation, CSF1R inhibition attenuated brain tissue loss regardless of sex, as well as hippocampal atrophy and thalamic neuronal loss in male mice. Selected gene markers of brain inflammation and apoptosis were reduced in males but increased in females after early CSF1R inhibition as compared to corresponding TBI vehicle groups. Neurological outcome in behaving mice was almost not affected. RNAseq and gene set enrichment analysis (GSEA) of injured brains at 30 dpi revealed more genes associated with dendritic spines and synapse function after early CSF1R inhibition as compared to vehicle, suggesting improved neuronal maintenance and recovery. In TBI vehicle mice, GSEA showed high oxidative phosphorylation, oxidoreductase activity and ribosomal biogenesis suggesting oxidative stress and increased abundance of metabolically highly active cells. More genes associated with immune processes and phagocytosis in PLX3397 treated females vs males, suggesting sex-specific differences in response to early CSF1R inhibition after TBI. CONCLUSIONS: M/M attenuation after CSF1R inhibition via PLX3397 during the early phase of TBI reduces long-term brain tissue loss, improves neuronal maintenance and fosters synapse recovery. Overall effects were not sex-specific but there is evidence that male mice benefit more than female mice.


Assuntos
Lesões Encefálicas Traumáticas , Fator Estimulador de Colônias de Macrófagos , Aminopiridinas , Animais , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Pirróis , Receptores de Fator Estimulador de Colônias/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
16.
Environ Toxicol Chem ; 41(11): 2848-2858, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35942914

RESUMO

Microplastic pollution has been recognized as a potential threat to environmental and human health. Recent studies have shown that microplastics reside in all ecosystems and contaminate human food/water sources. Microplastic exposure has been shown to result in adverse effects related to endocrine disruption; however, data are limited regarding how exposure to current environmental levels of microplastics during development may impact reproductive health. To determine the impact of environmentally relevant, chronic, low-dose microplastic fibers on fish reproductive health, juvenile Japanese medaka were exposed to five concentrations of polyethylene fibers for 21 days, and reproductive maturity was examined to assess the later life consequences. Fecundity, fertility, and hatching rate were evaluated to determine the organismal level impacts. Gonadal tissue integrity and stage were assessed to provide insights into potential tissue level changes. Expression of key reproductive genes in male and female gonads provided a molecular level assessment. A significant delay in hatching was observed, indicating cross-generational and organismal level impacts. A significant decrease in 11-beta-dehydrogenase isozyme 2 (HSD11 ß 2) gene expression in male medaka indicated adverse effects at the molecular level. A decrease in male expression of HSD11 ß 2 could have an impact on sperm quality because this enzyme is crucial for conversion of testosterone into the androgen 11-ketotestosterone. Our study is one of the first to demonstrate subtle impacts of virgin microplastic exposure during development on later life reproductive health. The results suggest a possible risk of polyethylene fiber exposure for wild fish during reproductive development, and populations should be monitored closely, specifically in spawning and nursery regions. Environ Toxicol Chem 2022;41:2848-2858. © 2022 SETAC.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Humanos , Masculino , Feminino , Microplásticos , Plásticos/toxicidade , Polietileno/toxicidade , Ecossistema , Androgênios/farmacologia , Isoenzimas/farmacologia , Poluentes Químicos da Água/análise , Sêmen/química , Reprodução , Testosterona/farmacologia , Água , Oxirredutases/farmacologia
17.
J Cardiovasc Pharmacol ; 80(3): 417-429, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900905

RESUMO

ABSTRACT: Prolonged and intense stress can exceed the body's normal self-regulation and limited compensatory and repair capacity, resulting in pathological damage to the body. In this study, we established a rat stress myocardial injury (SMI) model to explore the protective effect of melatonin (MLT) on SMI and its possible mechanisms of action. Adult female Sprague Dawley (SD) rats were randomly divided into 5 groups: blank control group (NC), SMI group, MLT low-dose group, MLT medium-dose group, and MLT high-dose group, and 10 rats in each group were used to establish a SMI model by the water immersion restraint method. We observed the changes in body weight and tail vein glucose of each group. Serum levels of corticosterone (Cort), creatine kinase isoenzyme (CK-MB), and Troponin Ⅰ (Tn-Ⅰ) and activity of lactic acid dehydrogenase were measured by ELISA. Transcriptome sequencing was used to find differentially expressed genes in the control and model groups, and the results were verified by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). HE staining was used to visualize the pathological changes in the heart tissue of each group, and Western blot was used to study the differences in protein expression in the cardiomyocytes of each group to further corroborate the results. The body weight growth rate of rats in the SMI group was significantly lower than that of the NC group ( P < 0.01), and the body weight growth rate of rats in the MLT high-dose group was significantly higher than that of the SMI group ( P < 0.05) with no significant difference compared with the NC group rats. The mean blood glucose of rats in the SMI group was significantly higher compared with the NC group ( P < 0.001), while the mean blood glucose of rats in the MLT administration groups was dose-dependently reduced compared with the SMI group. By RNA-seq and bioinformatics tools such as KEGG and Gene ontology, we found that the circadian clock-related genes Ciart , Arnt1 , Per1 , and Dbp were significantly downregulated in the SMI group during water immersion stress, and differentially expressed genes were enriched in the p38MAPK signaling pathway and p53 signaling pathway. Moreover, genes related to inflammation and apoptosis were differentially expressed. ELISA results showed that Cort, CK-MB, and Tn-Ⅰ levels were significantly higher in the SMI group compared with the NC group ( P < 0.01) and melatonin reduced the levels of Cort, CK-MB, and Tn-Ⅰ and decreased lactic acid dehydrogenase activity in rat serum. HE staining results showed that melatonin could attenuate stress-generated myocardial injury. Western blot showed that melatonin reduced the expression of p38MAPK, p53, Bax, and caspase-3 and increased the expression of Bcl-2 protein in rat heart. Melatonin can inhibit myocardial injury caused by water immersion, and its mechanism of action may be related to the regulation of the expression of circadian clock genes such as Ciart , Arnt1 , Per1 , and Dbp ; the inhibition of the expression of proapoptotic proteins such as p38MAPK, p53, Bax, and caspase-3; and the increase of the expression of Bcl-2 antiapoptotic protein.


Assuntos
Melatonina , Traumatismo por Reperfusão Miocárdica , Animais , Apoptose , Glicemia/metabolismo , Peso Corporal , Caspase 3/metabolismo , Creatina Quinase Forma MB/metabolismo , Feminino , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Melatonina/farmacologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miócitos Cardíacos , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/metabolismo , Água/metabolismo , Água/farmacologia , Proteína X Associada a bcl-2/metabolismo
18.
J Physiol Sci ; 72(1): 15, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850611

RESUMO

It has been reported that wild-type p53-induced gene 1 (Wig1), which is downstream of p53, regulates the expression of mutant huntingtin protein (mHtt) in Huntington's disease (HD) patients and transgenic mouse brains. Intrastriatal injection of malonic acid in rats is often used as a model to study the pathological changes of Huntington's disease, and this model has the advantages of a fast preparation and low cost. Therefore, in this study, we used intrastriatal injections of 6 µM malonic acid in rats to evaluate the effect of tolfenamic acid on motor and cognitive deficits and the effect of 6 mg/kg and 32 mg/kg tolfenamic acid on p53 and its downstream targets, such as Wig1. The results showed that 32 mg/kg tolfenamic acid attenuated motor and spatial memory dysfunction, prevented Nox1-mediated reactive oxygen species (ROS) production, and downregulated the activity of p53 by increasing the phosphorylation level at the Ser378 site and decreasing the acetylation level at the Lys382 site. Tolfenamic acid reduced mouse double minute 2 (Mdm2), phosphatase and tensin homologue (Pten), P53-upregulated modulator of apoptosis (Puma) and Bcl2-associated X (Bax) at the mRNA level to inhibit apoptosis and downregulated sestrin 2 (Sesn2) and hypoxia inducible factor 1, alpha subunit (Hif-1α) mRNA levels to exert antioxidative stress effects. In addition, 32 mg/kg tolfenamic acid played a role in neuroprotection by decreasing the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL)-positive cell numbers. However, there was no difference in the Wig mRNA level among all groups, and tolfenamic acid could not decrease the protein level of Wig1. In conclusion, tolfenamic acid inhibited the ROS-generating oxidase Nox1-regulated p53 activity and attenuated motor and spatial memory deficits in malonic acid-injected rats.


Assuntos
Doença de Huntington , Proteína Supressora de Tumor p53 , Animais , Apoptose , Doença de Huntington/genética , Doença de Huntington/patologia , Malonatos , Camundongos , Oxirredutases/metabolismo , Oxirredutases/farmacologia , RNA Mensageiro , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia
19.
J Mycol Med ; 32(2): 101247, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35124537

RESUMO

BACKGROUND: The flavonoid 2', 4'-dihydroxy-5'-(1''', 1'''-dimethylallyl)-8-prenylpinocembrin (8PP) obtained from Dalea elegans roots inhibits cell growth and cdr pumps, in addition to reversing fluconazole (FCZ) resistance in Candida albicans. AIMS: To study the effects of 8PP and FCZ on cdr-associated ATPase and cell energy generation in azole-resistant C. albicans planktonic cultures. MATERIALS AND METHODS: ATPase activity was measured as oligomycin-sensitive release of inorganic phosphate in fractions containing plasmatic membranes. Cell oxidoreductase activity was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction in C. albicans cells. RESULTS: FCZ, 8PP and their combination at a concentration of 125 µM of each compound inhibit ATPase activity by 61; 58 and 70, respectively. Inhibitory concentration 50 % (IC50) of 8PP was 78.59 ± 1.45 and 104.70 ± 1.25 µM for FCZ. In combination with 125 µM 8PP, FCZ IC50 was reduced by 3 times. Km was 0.96 ± 0.35 mM and Vmax 43.58 ± 5.49 picomoles/mg protein.min. At 125 µM, 8PP shifts the ATP saturation plot to right. A Dixon study using 2 and 5 mM ATP suggests a competitive interaction of 8PP and ATP for the hydrolysis enzymatic site. FCZ, 8PP or their combination at 125 µM does not produce cytotoxicity dependent on oxidoreductase activity. At higher concentrations, toxic effects are observed with both drugs at the MTT assay. IC50 (µM) was 355 ± 6 and 789 ± 11, for 8PP and FCZ, respectively. CONCLUSIONS: The flavonoid 8PP inhibits competitively oligomycin-sensitive ATPase activity associated to cdr transporters and decreases oxidoreductase-dependent cell viability in azole-resistant Candida albicans.


Assuntos
Candida albicans , Fabaceae , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Azóis/metabolismo , Azóis/farmacologia , Farmacorresistência Fúngica , Flavonoides/farmacologia , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Oxirredutases/metabolismo , Oxirredutases/farmacologia
20.
Adv Healthc Mater ; 11(12): e2200121, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35182457

RESUMO

Multidrug-resistant (MDR) pathogenic bacterial infections have become a major danger to public health. Synergetic therapy through multiple approaches is more powerful than the respective one alone, but has been rarely achieved in defeating MDR bacterial infections so far. Herein, indocyanine green-functionalized Mn3 O4 nanosheets are engineered as an efficient and safe antibacterial agent with photothermal, photodynamic, and oxidase-like activities, which display powerful ability in treating MDR bacterial infections. Therein, photothermal and photodynamic activities can be triggered by a single low-powered near-infrared laser (808 nm, 0.33 W cm-2 ), resulting in the generation of localized hyperthermia (photothermal conversion efficiency, 67.5%) and singlet oxygen. Meanwhile, oxidase-like activity of this material further leads to the generation of hydroxyl radical as well as superoxide radical. Sheet-like structure with rough surfaces make them tends to adhere on bacterial surface and thus damage membrane system as well as influence bacterial metabolism. As a result, Gram-positive and Gram-negative bacteria can both be eradicated. Animal experiments further indicate that the functionalized Mn3 O4 nanosheets can effectively treat methicillin-resistant Staphylococcus aureus-infected wounds through the triple synergetic therapy. Moreover, toxicity evaluation in vitro and in vivo has proved the superior biosafety of this material, which is promising to apply in clinical anti-infective therapy.


Assuntos
Infecções Bacterianas , Farmacorresistência Bacteriana Múltipla , Hipertermia Induzida , Raios Infravermelhos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/terapia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hipertermia Induzida/métodos , Staphylococcus aureus Resistente à Meticilina , Nanoestruturas , Oxirredutases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...